메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최순군 (국립농업과학원) 이병모 (국립농업과학원) 정구복 (국립농업과학원) 전상민 (국립농업과학원) 어진우 (국립농업과학원) 이종문 (국립농업과학원) 이준혁 (노트스퀘어)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.15 No.5-2
발행연도
2024.10
수록면
873 - 887 (15page)
DOI
10.15531/KSCCR.2024.15.5.873

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Scientific, evidence-based vulnerability assessments are vital for predicting and mitigating the climate change risks poses to national systems. This study proposes a climate change vulnerability assessment method by combining a process-based model and machine learning, using nutrient runoff vulnerability in agricultural land as an example. A training dataset was generated using the process-based model APEX (Agricultural Policy and Environmental eXtender) to train a nonlinear regression machine learning model. The trained nonlinear regression model accurately replicated the APEX results, with an R² value of 0.53 for nitrogen in paddy, and 0.72 for nitrogen and 0.71 for phosphorus in upland. This model was then applied to quantify nitrogen and phosphorus discharge at the si (city) and gun (county) levels. The results for each indicator were normalized, and weights were assigned using the Analytic Hierarchy Process (AHP). Vulnerability assessments were then conducted for mid-term (2041 ~ 2070) and long-term (2071 ~ 2100) future scenarios, and compared with the baseline period (1981 ~ 2010). The results showed that the average nutrient discharge vulnerability score for si and gun units was 31.4 in the baseline period, with a minimum of 0.6 and a maximum of 70.0. Under the SSP5-8.5 scenario, the average score increased to 43.6 in the mid-term future and 54.7 in the long-term future. However, when scenarios of compliance with standard fertilization rates for paddy and a 20% reduction in fertilization rates for upland were applied, the average score dropped to 33.3 in the mid-term future and 44.5 in the long-term future. These results highlight potential policy measures to mitigate the increasing vulnerability due to climate change in the agricultural sector and provide a rapid reference for policymakers when designing effective adaptation strategies.

목차

ABSTRACT
1. 서론
2. 재료 및 방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091125360