메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jang Chloe Soohyun (Seoul National University College of Medicine) Kim Hakin (Seoul National University) Kim Donghyun (Seoul National University College of Medicine) Han Buhm (Seoul National University College of Medicine)
저널정보
한국유전학회 Genes & Genomics Genes and Genomics Vol.46 No.6
발행연도
2024.6
수록면
701 - 712 (12page)
DOI
10.1007/s13258-024-01514-w

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background The importance of the human microbiome in the analysis of various diseases is emerging. The two main methods used to profile the human microbiome are 16S rRNA gene sequencing (16S sequencing) and whole-genome shotgun sequencing (WGS). Owing to the full coverage of the genome in sequencing, WGS has multiple advantages over 16S sequencing, including higher taxonomic profiling resolution at the species-level and functional profiling analysis. However, 16S sequencing remains widely used because of its relatively low cost. Although WGS is the standard method for obtaining accurate species-level data, we found that 16S sequencing data contained rich information to predict high-resolution species-level abundances with reasonable accuracy. Objective In this study, we proposed MicroPredict, a method for accurately predicting WGS-comparable species-level abundance data using 16S taxonomic profile data. Methods We employed a mixed model using two key strategies: (1) modeling both sample- and species-specific information for predicting WGS abundances, and (2) accounting for the possible correlations among different species. Results We found that MicroPredict outperformed the other machine learning methods. Conclusion We expect that our approach will help researchers accurately approximate the species-level abundances of microbiome profiles in datasets for which only cost-effective 16S sequencing has been applied.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0