메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yang Yitao (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou) Li Jianyang (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou) Zhang Chonghong (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.6
발행연도
2024.6
수록면
2,071 - 2,078 (8page)
DOI
10.1016/j.net.2024.01.015

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The precipitation of solutes is a major cause of irradiation hardening and embrittlement limiting the service life of reactor pressure vessel (RPV) steels. Impurities play a significant role in the formation of precipitation in RPV materials. In this study, the effects of carbon on cluster formation and irradiation hardening were investigated in an RPV alloy Fe-1.35Mn-0.75Ni using C and Fe ions irradiation at 290 ◦C. Nanoindentation results showed that C ion irradiation led to less hardening below 1.0 dpa, with hardening continuing to increase gradually at higher doses, while it was saturated under Fe ion irradiation. Atom probe tomography revealed a broad size distribution of Ni–Mn clusters under Fe ion irradiation, contrasting a narrower size distribution of small Ni–Mn clusters under C ion irradiation. Further analysis indicated the influence of carbon on the cluster formation, with soluteprecipitated defects dominating under C ion irradiation but interstitial clusters dominating under Fe ion irradiation. Simulations suggested that carbon significantly affected solute nucleation, with defect clusters displaying smaller size and higher density as carbon concentration increased. The higher hardening at doses above 1.0 dpa was attributed to a substantial increase in the number density of defect clusters when carbon was present in the matrix.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0