메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Rubina Akter Rabeya (Inje University) Jeong-Wook Seo (Incheon Sejong Hospital) Kyoung-Hee Kim (Incheon Sejong Hospital) Hee-Cheol Kim (Inje University) Heung-Kook Choi (Inje University)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2024년도 추계종합학술대회 논문집 제28권 제2호
발행연도
2024.10
수록면
71 - 74 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Early-stage analysis of various heart diseases can be facilitated by the efficient segmentation and quantification of color variance presence in cardiac histopathology images. This research focuses on examining 4 histopathological whole-slide cardiac images stained with two methods: Masson’s Trichrome (MT) and Sirius Red. K-means clustering algorithms were utilized to segment the tissue components based on the color variances and characteristics of different types of fibrosis present in the images. However, directly applying the K-means clustering algorithm to cardiac image segmentation presents challenges due to the anatomical complexity of heart tissue images. To address this, we utilized morphological methods to refine the shifting of mean thresholds and reduce complexity in post-processing segmented cardiac images. Following the separation and annotation of tissue components, ground truth patches (128×128 pixels) from the three types of fibrosis region (Ischemic, Interstitial, and Replacement), and patches (128×128 pixels) from the original whole slide image (WSIs) are extracted for each stain, preparing them for U-Net-based segmentation. The U-Net architecture incorporates the EfficientNetB3’s encoder path as its backbone to optimize image depth, width, and size. A comprehensive evaluation of accuracy, Dice coefficient (DC), and Jaccard coefficient (JC) analyses is conducted to assess the effectiveness of the models. This study aims to aid pathologists in cardiac disease analysis by providing accurate fibrosis assessment and contributing to advancing future AI-driven segmentation algorithms in digital pathology and medical imaging.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Literature Review
Ⅲ. Materials and Method
Ⅳ. Experimental Results
Ⅴ. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0