메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Min-Ho Ha (Chungbuk National University) Saba Arshad (Chungbuk National University) Min-seon Chae (Chungbuk National University) Sung-chul Yun (Chungbuk National University) Seung-hwan Kim (GSF Solution) Tae-Hyoung Park (Chungbuk National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
225 - 230 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As the artificial intelligence market develops, demand for semiconductors also increases. In order to increase the efficiency of the semiconductor production process, anomaly detection technology is needed based on sensor values attached to process machines. In this paper, we propose an anomaly detection system that determines whether there are abnormalities in the values obtained by attaching a sensor to the actual deposition process. The attached sensors include gas, temperature, and pressure sensors. A communication module is designed and made into a database, and the presence or absence of anomalies is determined using the characteristics of multivariate time series data through transformer-based anomaly detection network. An attention module-based transformer network is used in the AI-based anomaly detection network. Through evaluation, we confirmed that the transformer-based anomaly detection network achieves the best performance in terms of accuracy relative to other anomaly detection methods.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. SEMICONDUCTOR DEPOSITION PROCESS
4. PROPOSED SYSTEM
5. EXPERIMENTS & RESULTS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0