메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seong Kyeong Kim (Kyungpook National University) Min Young Kim (Kyungpook National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
453 - 458 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
2D medical visualization techniques often fall short in adequately representing complex 3D anatomical structures. 2D surgical navigation lacks depth information, which is a significant drawback. Additionally, displaying medical data on a 2D screen during surgery is suboptimal because it necessitates the surgeon to constantly shift their focus. Augmented Reality (AR) compensates for the significant drawback of 2D surgical navigation, which lacks depth information. AR is a technology that overlays computer-generated information onto the real world, providing users with an enhanced visual experience. By integrating digital information with the physical environment in real-time, AR offers more intuitive and useful information. Currently, research on surgical navigation using AR is actively progressing. This innovative technology is being explored and developed to enhance the precision, efficiency, and safety of surgical procedures. In this paper, we utilize a snapshot from the built-in forward camera of the OST-HMDs, capturing both virtual points and real marker balls, to automatically calculate the transformation matrix between the virtual and real world. This method requires precise positions of both the virtual points and the real markers to successfully overlay anatomical information onto the real world. we use the YOLOv8 model and Virtual Aruco Marker to precisely determine the positions of both real and virtual points, and to automatically identify their points, ensuring an enhanced AR Navigation System.

목차

Abstract
1. INTRODUCTION
2. Materials And Methods
3. Result
4. Conclusion
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0