메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Koki Shoda (The University of Tokyo) Jun Younes Louhi Kasahara (The University of Tokyo) Hajime Asama (The University of Tokyo) Qi An (The University of Tokyo) Atsushi Yamashita (The University of Tokyo)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
614 - 619 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we propose a novel method for detecting defects in concrete structures using the sound and force signals from hammering tests. In recent years, the aging of concrete structures has become a significant issue for social infrastructure. Hammering inspection is one of the most widely used non-destructive testing methods for detecting defects in concrete. Although unsupervised methods for defect detection that do not require training machine learning models have been proposed, they essentially only allow for the clustering of hammering sounds, without indicating whether the clusters consist of healthy or defective hammering sounds. In this study, we propose a novel method to calculate the likelihood of defects in each cluster. This method identifies defect clusters based on the characteristic that defect areas generate higher sound energy during hammering tests. Experiments were conducted using multiple concrete specimens, including those with delamination and void, to validate the proposed method. The proposed method was able to identify defect clusters effectively and demonstrated high performance for defect detection.

목차

Abstract
1. INTRODUCTION
2. PROPOSED METHOD
3. EXPERIMENT
4. RESULTS
5. DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0