메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yee Mon Oo (Inje University) Kounen Fathima (Inje University) Ziallah Khan (Inje University) Hee Cheol Kim (Inje University)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2024년도 춘계종합학술대회 논문집 제28권 제1호
발행연도
2024.5
수록면
234 - 237 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this digital era, music has become a necessary role in people’s lives, and discovering songs that align with users’ unique tastes and preferences plays a vital role in music-related applications. In this paper, we propose a content-based approach to Music Recommendation System (MRS) by leveraging a rich dataset “Spotify Million Song Dataset” which includes audio features, track metadata, user, playlist, and artist information for 57650 tracks. Our proposed system also employs the advanced techniques of Natural Language Processing (NLP), including the Snowball Stemmer and TF-IDF Vectorization algorithms, for the feature extraction process. These techniques are utilized to transform the textual information of songs into high-dimensional feature vectors. Cosine Similarity has been utilized as the primary metric for similar track recommendation function, enabling the computation of song rack similarity based on their feature vectors. This paper presents the methodology and approaches used for data preprocessing, feature extraction, and recommendations in the proposed system including its results and accuracy. Our system’s overall cluster-based accuracy score comes out at 72.70 percent.

목차

ABSTRACT
I. INTRODUCTION
II. METHODOLOGY
III. EXPERIMENT AND RESULTS RECOMMENDATION FUNCTION
IV. CONCLUSION AND FUTURE WORKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0