메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Raza Muhammad Yousaf (School of Economics, Shandong Technology and Business University) Tang Songlin (School of Economics, Shandong Technology and Business University)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.7
발행연도
2024.7
수록면
2,480 - 2,488 (9page)
DOI
10.1016/j.net.2024.02.006

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Pakistan is a developing country whose maximum amount of mixed energy is provided by electricity, oil, coal, and gas. The study objective is to analyze the six major social factors to describe the significance of nuclear energy and CO2 emissions at the decisive point coming from income, trade, energy, and urbanization. This study has tried to analyze the impact of different factors (i.e., fossil energy, GDP per capita, overall population, urban population, and merchandise trade) on Pakistan’s CO2 emissions using the extended STRIPAT model from 1986 to 2021. Ridge regression has been applied to analyze the parameters due to the multicollinearity problem in the data. The results show that (i) all the factors show significant results on carbon emissions; (ii) population and energy factors are the huge contributors to raising CO2 emissions by 0.15% and 0.16%; however, merchandise and GDP per capita are the least contributing factors by 0.12% and 0.13% due to import/export and income level in Pakistan, and (iii) nuclear energy and substitute overall show a prominent and growing impact on CO2 emissions by 0.16% and 0.15% in Pakistan. Finally, empirical results have wider applications for energy-saving, energy substitution, capital investment, and CO2 emissions mitigation policies in developing countries. Moreover, by investigating renewable energy technologies and renewable energy sources, insights are provided on future CO2 emissions reduction.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0