메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Turja Sudeep Das (국립공주대학교) Islam Md. Rajibul (국립공주대학교) Van Nguyen Dong (국립공주대학교) 김두기 (국립공주대학교)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.9
발행연도
2024.9
수록면
3,512 - 3,527 (16page)
DOI
10.1016/j.net.2024.03.048

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Seismic quantification of nonstructural components like electrical cabinets is essential to ensure the uninterrupted operation of nuclear facilities during earthquake events. This process requires experimental tests, which can be expensive, time-consuming, and limited by safety concerns and precision. As an alternative to that, numerical simulations should be done in such a way that they are capable of capturing the global dynamic behavior with minimum computational efforts. However, in the case of complex interconnected cabinets, the simplification of numerical models often poses difficulties in illustrating the real-time behavior of combined cabinet systems. On the other hand, detailed three-dimensional (3D) numerical models require lengthy time and sophisticated computational setup, indicating their expensive computational efforts. To resolve this issue, a simplified and efficient 3D modeling approach has been proposed in this study. The accuracy of the results from the new model showed an excellent match with that obtained from the responses of the experimental test. After the validation and observation of the numerical efficiency, a practical application is implemented by considering the impacts of earthquake frequency contents on the behavior of cabinet systems. From the outcomes, it is evident that this proposed modeling methodology has the potential to replace the complex combined nuclear cabinet models for earthquake evaluation.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0