메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Abdullah Wesam (School of Physics, Universiti Sains Malaysia) Ramli Ramzun M. (School of Physics, Universiti Sains Malaysia) Khazaalah Thair Hussein (School of Physics, Universiti Sains Malaysia) Azman Nurul Zahirah Noor (School of Physics, Universiti Sains Malaysia) Nawafleh Tasnim M. (School of Physics, Universiti Sains Malaysia) Salem Farah (School of Physics, Universiti Sains Malaysia)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology Vol.56 No.9
발행연도
2024.9
수록면
3,608 - 3,615 (8page)
DOI
10.1016/j.net.2024.04.012

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study introduces a lead-free alternative for enhanced radiation protection. While lead aprons effectively attenuate ionizing radiation, concerns regarding flexibility, weight, and environmental hazards persist. In response, the present research is focused on producing an innovative sheet shielding comprised of carefully selected dense metal oxide microparticles (DMOs-MPs) and liquid silicone rubber (LSR). To evaluate the efficacy of the LSR samples, the current study uses rigorous testing procedures, such as microstructure characterization using EDX and FESEM. Furthermore, the study investigated key attenuation parameters within the LSR samples. Radiation protection was greatly and effectively supplied using DMOs-MPs filler (Bi-1 to Bi-7) in LSR samples; this protection reached 99.9% in the X-ray energy range. Due to the unique characteristics of the Bi-7, the results demonstrated that the samples’ shielding efficiency improved with the addition of high atomic number and high-density fillers. It had the greatest attenuation coefficient and density. At 60 keV, Bi-7’s density was 2.980 gcm−3, and its LAC and MAC were 19.2621 cm−1 and 6.4638 cm2/g, respectively. It also had the lowest half-value layer values in the energy range of 60–120 keV. The LSR samples showed effective radiation absorption for different energy levels, indicating that LSR can enhance the flexibility and comfort of the apron while providing adequate radiation protection. The incorporation of the DMOs-MPs with LSR represents an effective contribution and a noteworthy stride to enhance the safety and well-being of medical professionals routinely exposed to ionizing radiation

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0