메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이태윤 (Hanbat National University) 윤석문 (yandy) 이승호 (Hanbat National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제28권 제3호
발행연도
2024.9
수록면
474 - 478 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크를 제안한다. 제안하는 딥러닝 네트워크는 현장에서 생산되는 의약 용기의 데이터를 사용하여 의약 용기에 특화된 딥러닝 네트워크로 더욱 정확하게 품질을 검사한다. 또한, 인라인 검사가 가능한 딥러닝 네트워크를 사용하여 품질 검사의 속도를 증대시킬 수 있다. 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 개발은 3단계로 나뉜다. 첫 번째로 실제 의약 용기 생산 현장에서 1개의 이물검사용 line 카메라, 3개의 치수검사용 area 카메라를 통해 얻은 약 10,000장의 이미지로 데이터셋을 구축한다. 두 번째로 의약 용기 데이터 전처리에서는 이물 검사, 치수검사의 용도에 맞게 불량이 일어날 수 있는 곳에 ROI를 지정하여 데이터를 전처리한다. 세 번째로 전처리된 데이터를 이용하여 딥러닝 네트워크를 학습한다. 딥러닝 네트워크는 적은 채널 수를 적용하여 linear layer를 사용하지 않아 판정 속도를 향상하고, PReLU와 residual learning를 적용하여 정확도를 향상한다. 이를 통해 4개의 카메라에서 구축한 데이터셋에 맞는 4개의 딥러닝 모듈을 제작한다. 제안된 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, 딥러닝 모듈의 판별 정확도가 99.4%로 세계 최고 수준인 95%보다 우수한 성적을 달성하였고, 평균 판별 속도가 0.947초로 측정되어 세계 최고 수준인 1초보다 우수한 성적을 달성하였다. 따라서, 본 논문에서 제안한 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 효용성이 입증되었다.

목차

Abstract
요약
I. 서론
II. 본론
III. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092379951