메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sumedha Gupta (Departments of Obstetrics & Gynaecology, Vardhman Mahavir Medical College and Safdarjung Hospital) Sana Ahuja (Departments of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital) Dheer Singh Kalwaniya (Departments of General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital)
저널정보
대한산부인과학회 Obstetrics & Gynecology Science Obstetrics & Gynecology Science Vol.67 No.5
발행연도
2024.9
수록면
449 - 466 (18page)
DOI
10.5468/ogs.24120

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Immunohistochemistry (IHC) has become an indispensable tool in routine gynecological pathology, particularly with the advancements in molecular understanding and histological classification of gynecological cancers. This evolution has led to new immunostainings for diagnostic and classification purposes. This review describes the diagnostic utility of IHC in gynecological neoplasms, drawing insights from literature reviews, personal experiences, and research findings. It delves into the application of IHC in resolving morphologically equivocal cases, emphasizing its role in achieving an accurate diagnosis. The selection of appropriate immunomarkers for common scenarios encountered in gynecological pathology aids pathologists in navigating complex cases. Specifically, we focus on cervical and endometrial malignancies, elucidating the molecular rationale behind the use of specific immunohistochemical markers. An updated overview of essential immunohistochemical markers provides knowledge for precise diagnosis and classification of gynecological cancers. This review serves as a valuable resource for clinicians and researchers involved in the management and study of gynecological malignancies, facilitating improved patient care and outcomes.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0