메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Young Hoon Chang (Seoul National University Bundang Hospital) Hae Dong Lee (Seoul National University Bundang Hospital) Jinbae Park (Ainex Co., LTD.) Jiwoon Jeon (Ainex Co., LTD.) 조수정 (서울대학교) 강승주 (서울대학교병원 강남센터 소화기내과) Jae-Yong Chung (Seoul National University Bundang Hospital) Yu Kyung Jun (Seoul National University Bundang Hospital) 최용훈 (분당서울대학교병원 내과) 윤혁 (분당서울대학교병원) Young Soo Park (Seoul National University Bundang Hospital) Nayoung Kim (Seoul National University Bundang Hospital) Dong Ho Lee (Seoul National University Bundang Hospital)
저널정보
대한위암학회 Journal of Gastric Cancer Journal of Gastric Cancer Vol.24 No.3
발행연도
2024.7
수록면
327 - 340 (14page)
DOI
10.5230/jgc.2024.24.e28

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy. Materials and Methods We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296). Results ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%–88.47%), dysplasia (88.31%; 83.24%–93.39%), and benign lesions (83.12%; 77.20%–89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%–93.84%) and 91.43% (86.79%–96.07%), respectively, compared with an accuracy of 60.71% (52.62%–68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%–91.27%), 90.54% (87.21%–93.87%), and 88.85% (85.27%–92.44%), respectively. Conclusions ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0