메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이정은 (동남보건대학교 응급구조과) 문준동 (국립공주대학교) 김아정 (경일대학교 응급구조학과)
저널정보
한국응급구조학회 한국응급구조학회지 한국응급구조학회지 제28권 제2호
발행연도
2024.8
수록면
7 - 19 (13page)
DOI
10.14408/KJEMS.2024.28.2.007

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To adjust item numbers in a national test, this study used item response theory to examine changes in average scores, reliability, difficulty, and discrimination according to the adjustment of item numbers. Methods: We analyzed the dichotomous coding of correct and incorrect answers of 473 examinees in a mock test conducted in 2023. Additionally, as an explanatory pilot study, we used an online questionnaire to survey experts on their perceptions of the appropriate item numbers for each test subject from January 18, 2024, to February 15, 2024. Results: Regarding the item numbers on the national exam, experts preferred to reduce the number of management of emergency patients (33.14±6.09, p<.05) and advanced emergency medical care: subtopics (104.49±11.55, p<.05), and the total number of questions (217.82±20.95, p<.05). In a simulation set in which items with low item fit were removed after fitting a two-parameter item response theory model, reliability was maintained at .910 until the 5th test consisting of 185 questions with little loss of difficulty, discrimination, and average score, and there was no correlation between item numbers and average score. Conclusion: Experts responded that reducing the number of items on the national exam was appropriate. As a result of the item reduction simulation, there was no significant loss in the average score, difficulty, discrimination, or reliability. More reliable results could be obtained if the results were based on a validity analysis and analyzed using actual national exams.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0