메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Aria Bisma Wahyutama (Changwon National University) Mintae Hwang (Changwon National University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
82 - 85 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper introduces a new concept that involves YOLO object detection that will help apartment resicents separate the recyclables. The YOLO object detection will detect the partially covered recyclables help by the resicents and will automatically produce a notification to throw them into the correct bin accordingly by turning on a buzzer and LED attached to the corresponding bin. The data set for the object detection is gathered from multiple open-source platforms such as Kaggle that trained in YOLOv5 to classify four different types of recyclables, which is Glass, Can, Paper, and Plastic. Later on, the trained model will be run inside a microcomputer such as Raspberry Pi that will be installed on the trash bin around the neighbourhood. A simulation test is conducted by running the model on a Windows Pc with several recyclables brough to the front of the webcam one by one to trigger the object detection. On the simulation, the trained model resulted in a score of 0.992 on precision, 0.989 on recall, 0.991 on mAP@0.5, and 0.896@0.5:0.95. The result shows a promising number that provides enough headroom for a less powerful computer to still perform well without sacrificing too much accuracy.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODEL AND METHODS
Ⅲ. RESULTS
Ⅳ. CONCLUSIONS AND FUTURE STUDIES
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0