메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lujia Xie (Civil Aviation University of China) Zeyu Xu (Hebei University of Technology) Peng Su (Hebei University of Technology) Yongjian Li (Hebei University of Technology) Lanchao Chang (Hebei University of Technology)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.30 No.1
발행연도
2025.3
수록면
55 - 66 (12page)
DOI
10.4283/JMAG.2025.30.1.55

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a multi-harmonic optimization method to improve the torque performance of the axialmodular flux-reversal permanent-magnet (AM-FRPM) machine. The harmonic distribution of torque ripple is investigated from three perspectives, includin g cogging torque, reluctance torque ripple, and PM torque ripple. It can be observed that the 3rd and 9th harmonic in each torque ripple component are canceled due to the cooperative structure of the modules. To optimize the machine accurately and efficiently, the relationship between air-gap flux density harmonics and torque ripple harmonics is deduced based on magnetic field modulation theory. Subsequently, the target harmonics in air-gap flux density can be identified. Furthermore, a sensitivity analysis of the target harmonics for the main design variables of the machine is conducted, and the design variables with high sensitivity are selected. To obtain the optimal design variables, the proposed optimization method, combining experimental and response surface methods, is developed to optimize the AMFRPM machine. Finally, the optimized design enhances output torque and suppresses torque ripple, and the effectiveness of the proposed method is verified through FEA and experiments.

목차

1. Introduction
2. Operation Principle
3. Objective Harmonics Determination of Torque Performances
4. Multi-objective Harmonics Optimization
5. Electromagnetic Characteristics Analysis
6. Experimental Verification
7. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092448648