메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Van-Phong Truong Daesung Lee (National Korea Maritime and Ocean University,) Jun-Ho Huh (National Korea Maritime and Ocean University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.23 No.1
발행연도
2025.3
수록면
17 - 25 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The term “Crunch Mode” refers to periods of intense, prolonged work aimed at meeting deadlines or achieving critical goals. However, extended work in this state can have severe health consequences, including an increased risk of stroke. A stroke occurs when the brain’s blood supply is interrupted or reduced, leading to oxygen and nutrient deprivation that can result in brain cell death. According to the World Health Organization (WHO), stroke is a leading cause of death and disability worldwide. Recognizing early warning signs is crucial in mitigating its impact. This paper employs machine learning techniques to predict the likelihood of an early-stage stroke, as even a mild stroke can cause lasting brain damage, while a severe stroke may be fatal. In this paper, we use machine learning models to predict stroke risk early based on a reliable dataset for stroke prediction that was taken from the Kaggle website.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. Make Early Predictions about Risk of Stroke
IV. RESULTS
V. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0