메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kai Han (Dept. of Convengence Management, Corporate Management Major, Woosong University) Longying Kan (Shenyang University of Chemical Technology) 김형태 (우송대학교)
저널정보
한국유통경영학회 유통경영학회지 유통경영학회지 제27권 제4호
발행연도
2024.8
수록면
25 - 37 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aims to use big data technology to predict the risk probability of hazardous chemicals logistics roads, convert the risk probability into a cost, and establish a model with the goal of cost minimization. Research design, data, and methodology: The objective function is composed of three parts: vehicle cost, transportation cost, as well as risk cost. An optimized ant colony algorithm is proposed to solve this model and to compare the difference in cost incurred b y multi-type t ransportation and s ingle-type t ransportation. During the experiment, A regional hazardous chemical logistics company is an example. Results: The results of the model solution show that the use of big data techniques to predict the risks on the logistics transportation path of hazardous chemicals, while taking into account transportation safety and logistics costs, and improving the transportation safety of hazardous chemicals, the comparison between multi-type transportation and single-type transportation highlights the advantages of multi-type transportation. The advantages are more in line with the actual operating conditions of logistics companies, and the optimized ant colony algorithm achieves better performance and convergence speed than the basic ant colony algorithm in terms of optimal solution and convergence speed. Implications: Thus, it has certain reference value for hazardous chemical logistics companies to choose transportation solutions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0