메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이규하 (전북대학교, 전북대학교 일반대학원)

지도교수
남기석, 유동진
발행연도
2013
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (10)

초록· 키워드

오류제보하기
Among the various types of fuel cells, polymer electrolyte membrane (PEM) fuel cells have attracted considerable attention for transportation and for portable devices for low operation temperature and fast start-up. The state-of-art- commercial PEM materials are typically based on perfluorinated sulfonic acid containing ionomers (PFSAs), represented by DuPont''s Nafion®. Despite their good chemical stability and proton conductivity at high relative humidity (RH) and low temperature, Nafion has several major drawbacks, such as high production cost, high fuel permeability, insufficient thermo-mechanical properties above 80℃, and low proton conductivity at low RH levels. In order to overcome these drawbacks, a number of alternative membranes have been studied for PEM. Many research groups are researching ways of finding applicable membranes better than Nafion. Hydrocarbon membrane is remarkable among alternative membranes because these kinds of hydrocarbon membranes have advantages of thermal stability, easy design structure and simple synthesis. therefore, we are trying to synthesis of hydrocarbon membranes.
A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic polymers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by 1H NMR and other technologies. The membranes were successfully castusing dimethyl sulfoxide (DMSO) solution at 100℃. The copolymers were characterized to confirm chemical structure by 1H NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above 240℃. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS cm-1 in block copolymer-50 at 60℃ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS cm-1 under the same measurement conditions. AFM images of the block copolymers showed well separated the hydrophilic and hydrophobic domains. It can be seen from the observed results that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

목차

List of tables ⅲ
List of figures ⅲ
Abstract ⅴ
1. 서 론 1
2. 실 험 20
2. 1. 시약 및 재료 20
2. 2. 실험 방법 20
2. 2. 1. 전구체 합성 20
2. 2. 2. 친수성 고분자 합성 21
2. 2. 3. 소수성 고분자 합성 21
2. 2. 4. 블록 코폴리머의 합성 22
2. 2. 5. 고분자 전해질 막의 제작 23
2. 3. 특성 분석 23
2. 3. 1. 용해도(Solubility) 23
2. 3. 2. 적외선 분광법(FT-IR) 23
2. 3. 3. 핵 자기 공명 분광법(1H NMR) 24
2. 3. 4. 열 중량 분석법(TGA) 24
2. 3. 5. 시차주사 열량측정법(DSC) 24
2. 3. 6. 물 함습율(Water uptake) 25
2. 3. 7. 이온교환능(Ion exchange capacity) 25
2. 3. 8. 산화안정도(Oxidative stability) 26
2. 3. 9 이온전도도(Ionic conductivity) 26
2. 3. 10 원자간 전자 현미경(Atomic force microscope) 26
3. 결과 및 고찰 27
3. 1. 친수성 고분자와 소수성 고분자의 합성 및 특성분석 27
3. 2. 블록 코폴리머와 고분자 막의 준비 30
3. 3. 블록 코폴리머의 특성분석 32
3. 4. 산화 안정도 측정(Oxidative stability) 38
3. 5. 열적 안정성 측정(TGA, DSC) 40
3. 6. 물 함습률과 이온 교환능 측정 43
3. 7. 이온 전도도 측정(Proton conductivity) 45
3. 8. 형태학 측정(Morphological characterization) 47
4. 결 론 49
참 고 문 헌 50

최근 본 자료

전체보기

댓글(0)

0