메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

정도인 (조선대학교, 조선대학교 대학원)

지도교수
오동욱
발행연도
2022
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Polymer composites are made by mixing various additives of nano / micro-scale inside the polymer matrix, and are produced by methods such as FFF, injection-molding, and etc. with excellent mechanical properties such as corrosion resistance, elasticity, lightness, and easy to manufacture. However, due to the limitations of low properties, it is being used limitedly, and various studies are being conducted to improve the physical properties. An understanding of additive alignment is required to improve the properties of composite materials. In general, the flow of suspension inside mold results in additive alignment, and in the direction of alignment, the effect of improving the properties can be confirmed by cutting the product. However, during the composite production manufacture, it is difficult to intuitively understand the effect of the flow field inside the mold on additive alignment.
The paper first performed a flow visualization analysis and CFD analysis of the polymer composite material in a channel inserting an orifice that mimiced the injection molding process. Flow visualization experiments were performed inside molds with orifice of various shapes. Additive alignment angles according to the mold position were analyzed using a composite material that mixed carbon fiber with a diameter of 7um and a length of 77um in polydimethylsiloxane (PDMS). The analyzed additive alignment angle was compared to the flow field calculated inside the channel with the same shape as the flow visualization experiment with CFD analysis. The orifice inserted inside the mold increases the shear rate, extension rate inside the channel, which has been shown to improve the angle in the direction in which the additive is perpendicular to the flow.
Orifice has a significant effect on changes in additive alignment and was applied to additive manufacturing methods based on the results. Flow visualization experiments were performed on nozzles with orifice inserted to improve the mass properties in the through-layer direction of the output filament. Unlike injection molding, carbon fiber was mixed in polydimethyloxane (PDMS) at high viscosity to laminate, and additive angles were analyzed for mold interior and extruded. In addition, the analyzed additive alignment angle was CFD analysis for the same shape to observe the flow field change. The inserted orifice made a drastic change to the shear rate, extension rate, and the angle of the additive changed due to its effect, but it showed a different tendency compared to the injection mold cases. In addition, the change in additive alignment in the nozzle has shown to be similar to additive alignment after the extrusion at the nozzle outlet. When an orifice, etc. is inserted inside the nozzle, the flow field inside the channel changes, and the sudden change in shear / extension rate is considered to be the cause of the perpendicular alignment of additive alignment. In addition, if the additive alignment is controlled inside the nozzle, the additive alingment can be contolled in a desired direction to control and enhance physical properties of an injection molded or a FFFprocessing products.

목차

CONTENTS Ⅰ
LIST OF FIGURES Ⅴ
LIST OF TABLES ?
DEFINITIONS & NOMENCLATURE ⅩⅣ
ABSTRACT ⅩⅤ
제1장 서론 1
제1절 연구 배경 1
1. 고분자 복합 소재 1
2. 첨가제 정렬 2
3. 적층 가공 3
제2절 연구 동향, 구성 및 목표 4
1. 연구 동향 4
2. 연구 구성 및 목표 12
제2장 사출 성형을 모사한 금형 내부 유동가시화 실험 및 첨가제 정렬 분석 13
제1절 첨가제 정렬 이론 13
제2절 유동가시화 실험 준비 및 방법 15
1. Orifice 금형 16
2. 액상 복합소재 19
3. 주사기 펌프 21
4. 광학 장치 22
제3절 CFD simulation 24
1. 해석 모델링 24
2. 해석 결과 24
제4절 실험 결과 및 고찰 26
1. 수력직경에 따른 첨가제 정렬 분석 26
2. Orifice 위치에 따른 첨가제 정렬 분석 30
제3장 적층 가공을 모사한 nozzle 내부 유동가시화 실험 및 첨가제 정렬 분석 36
제1절 유동가시화 실험 준비 및 방법 36
1. Orifice 금형 40
2. 액상 복합소재 42
3. 주사기 펌프 44
4. 광학 장치 45
제2절 CFD simulation 46
1. 해석 모델링 46
2. 해석 결과 47
제3절 실험 결과 및 고찰 50
1. 유동가시화 실험 50
2. CFD simulation 59
제4장 첨가제와 복합소재 물성의 상관관계 69
제1절 열전도도 측정 69
1. 샘플 제작 및 측정방법 69
2. 첨가제 농도 72
3. 첨가제 정렬 73
제2절 인장강도 측정 75
1. 샘플 제작 및 측정방법 75
2. 첨가제 농도 77
3. 첨가제 정렬 78
제5장 결론 81
REFERENCES 83

최근 본 자료

전체보기

댓글(0)

0