메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

허호성 (목포해양대학교, 목포해양대학교 대학원)

지도교수
김성종
발행연도
2023
저작권
목포해양대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
The interest in eco-friendly energy is increasing for environmental conservation, polymer electrolyte membrane fuel cell(PEMFC) are attracting attention as alternative power sources. Research on metallic bipolar plates, one of the fuel cell components, is actively conducted. Since the operating condition of the PEMFC is strong acidity in which sulfuric acid(H2SO4) and hydrofluoric acid(HF) are mixed, the durability of the metallic bipolar plates is very important. Titanium has excellent mechanical performance at various temperatures, excellent corrosion resistance, and high specific strength. So, light weight is possible when titanium is used as a bipolar plate. However, due to TiO2 passivation film formed on the titanium surface, corrosion resistance is improved but electrical conductivity is lowered. In this investigation, various surface treatments were applied on a titanium(Grade 1) to increase corrosion resistance and electrical conductivity. The various analysis(XRD, EDS, FE-SEM) and electrochemical characteristics(potentiodynamic polarization, potentiostatic experiment) were evaluated. The corrosion experiments were conducted in an aqueous solution of pH3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by the Department of Energy (DoE). The hydrogen gas and air were bubbled to simulate anode and cathode environments. PEMFC makes use of the Nafion membrane, which is a perfluorinated sulfonic acid ionomer. The reason pH 3 (H2SO4 + 0.1 ppm HF, 80 °C) is used is that the Nafion membrane has sulfonic acid groups (-SO3H), and a small amount of F- ions caused by the degradation of the Nafion membrane creates a corrosive environment. As a result of electrochemical experiments, TiN deposited by arc ion plating method presented excellent corrosion resistance with a value of less than 1μA/cm2 at both anode and cathode. In addition, the interfacial contact resistance presented a value of 10mΩ·cm2 or less, confirming that the electrical conductivity was improved. In the case of CrN deposited by the ion beam assisted deposition(IBAD) method, Cr2N and CrN were formed, and the electrical conductivity was superior to that of CrN deposited by arc ion plating. However, due to the formation of pores on the surface, corrosion resistance was superior to CrN deposited with arc ion plating. In the MMO(Ru/Ti) coating formed by thermal oxidation, the interfacial contact resistance increased due to the formation of TiO2. In addition, the surface area increased due to the formation of a cracked dried surface, resulting in an increase in current density.

목차

제 1장 서 론 1
제 2장 이론적 배경 4
2.1 고분자 전해질 연료전지 4
2.1.1 고분자 전해질 연료전지 특징 4
2.1.2 고분자 전해질 연료전지 작동 원리 7
2.2 고분자 전해질 연료전지용 분리판 10
2.2.1 분리판의 특징 및 역할 14
2.2.2 분리판의 종류 15
2.2.3 분리판의 DOE 목표 16
2.3 금속의 부식 19
2.3.1 부동태 특성 22
2.3.2 균일부식 24
2.3.3 공식 24
2.4 고분자 전해질 연료전지 금속 분리판용 소재 29
2.4.1 스테인리스강 29
2.4.2 타이타늄 합금 42
제 3장 타이타늄 분리판용 코팅 소재 선정 52
3.1 PVD 법에 의한 TiN 코팅의 특성 52
3.1.1 서론 52
3.1.2 시험편 및 실험방법 53
3.1.3 실험결과 및 분석 57
3.1.4 소결론 76
3.2 PVD 법에 의한 CrN 코팅의 특성 78
3.2.1 서론 78
3.2.2 시험편 및 실험방법 79
3.2.3 실험결과 및 분석 85
3.2.4 소결론 103
3.3 MMO(Ti/Ru) 코팅의 특성 105
3.3.1 서론 105
3.3.2 시험편 및 실험방법 106
3.3.3 실험결과 및 분석 111
3.3.4 소결론 124
제 4장 결 론 125
참 고 문 헌 127

최근 본 자료

전체보기

댓글(0)

0