메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Guzel Shkaberina (Reshetnev Siberian State University of Science and Technology) Lev Kazakovtsev (Reshetnev Siberian State University of Science and Technology)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.19 No.4
발행연도
2020.12
수록면
901 - 907 (7page)
DOI
10.7232/iems.2020.19.4.901

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose new models and algorithms for automatic classification of objects (clustering) based on the minimum sum-of-squared errors clustering (MSSC) model. Our approach was aimed at improving the accuracy and stability of the result in solving practical problems, such as identifying homogeneous batches of industrial products. We examined the application of the MSSC model and k-means algorithm with various distance measures: Euclidean, Manhattan, Mahalanobis for the problem of automatic classification of objects in a multi-dimensional space of measured parameters (features). For such problems, we present a new model (Mahalanobis Minimum Sum-of-Squared Error Clustering, MMSSC) for solving problems of automatic classification based on the MSSC model with Mahalanobis distance. In addition, we present a new algorithm for automatic classification of objects based on the MMSSC optimization model with the Mahalanobis distance measure and the weighted average covariance matrix calculated from the training sample (pre-labeled data). This algorithm allows us to reduce the number of errors (increasing the Rand index) when identifying homogeneous production batches based on the results of quality control tests. A new approach in the development of evolutionary algorithms for the MSSC problem is presented using a greedy agglomerative heuristic procedure contained in several genetic operators. The use of this approach enables a statistically significant increase in the accuracy of the result (the achieved value of the objective function within the chosen MMSSC mathematical model), as well as its stability, in a fixed time, in comparison with the known algorithms. Thus, in this work, an increase in the accuracy of solving the problem of automatic classification is achieved both by increasing the adequacy of the model (according to the Rand index) and by improving the algorithm that allows us to achieve the best objective function values of within the framework of the chosen model.

목차

ABSTRACT
1. INTRODUCTION
2. CONCLUSION
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0