메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
리메이르 (서울대학교 미술대학 디자인대학원 석사과정) 정의철 (서울대학교) 박윤모 (서울대학교 미술대학 디자인학부 대학원) 임정섭 (서울대학교 미술대학 디자인학부 대학원)
저널정보
한국디자인트렌드학회 한국디자인포럼 한국디자인포럼 제26권 제2호
발행연도
2021.1
수록면
145 - 154 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Artificial intelligence) (AI) is a branch of machine learning that facilitates the design and enhances designers’ efficiency. AI has increased the assistants’ efficiency in searching appropriate images. With the rate AI is developing, new tools will be developed that co-work with a designer to help apprentices learn the designer’s style and understand the design intent. Therefore, reasoning design intent and design elements are the important foundation for AI-based design tools. The purpose of this study is to provide such a foundation by proposing a model to infer the relationship between design intent and elements. Methods We observed and recorded the design intent and how a designer designs with elements. Then, we analyzed causal relations and probability between design intent and elements according to Bayes' theorem. In addition, we constructed an ontology to generate the Bayesian network. Finally, we simulated design intent reasoning based on the selected designer’s elements. Result We proposed an ontology and Bayesian Network for the design intent from the selected elements and provided appropriate design elements recommendations for specific design intent. Conclusion We built an ontology to make programs understand the relationship between design intent and design elements based on the observation of a designer’s work. We proposed a Bayesian Network to reason the designer’s intent from the designer’s selected elements and offer design suggestions based on the design intent. This study is a foundational study for the development of AI design tools that co-work with a designer like apprentices.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0