메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2002년 춘계학술대회논문집
발행연도
2002.6
수록면
1,037 - 1,044 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a two-phase mathematical programming approach by considering classification gap to solve the proposed credit scoring problem so as to complement any theoretical shortcomings. Specifically, by using the linear programming (LP) approach, phase 1 is to make the associated decisions such as issuing grant of credit or denial of credit to applicants, or to seek any additional information before making the final decision. Phase 2 is to find a cut-off value, which minimizes any misclassification penalty (cost) to be incurred due to granting credit to 'bad' loan applicant or denying credit to 'good' loan applicant by using the mixed-integer programming (MIP) approach. This approach is expected to find appropriate classification scores and a cut-off value with respect to deviation and misclassification cost, respectively.
Statistical discriminant analysis methods have been commonly considered to deal with classification problems for credit scoring. In recent years, much theoretical research has focused on the application of mathematical programming techniques to the discriminant problems. It has been reported that mathematical programming techniques could outperform statistical discriminant techniques in some applications, while mathematical programming techniques may suffer from some theoretical shortcomings.
The performance of the proposed two-phase approach is evaluated in this paper with firm data and loan applicants data, by comparing with three other approaches including Fisher's linear discriminant function, logistic regression and some other existing mathematical programming approaches, which are considered as the performance benchmarks. The evaluation results show that the proposed two-phase mathematical programming approach outperforms the aforementioned statistical approaches. In some cases, two-phase mathematical programming approach marginally outperforms both the statistical approaches and the other existing mathematical programming approaches.

목차

Abstract

1. Introduction

2. Literature Review

3. Mathematical Formulations and Solution Approach

4. Computational Experiments

5. Conclusions

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013775650