메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 대한건축학회논문집 - 계획계 제20권 제11호
발행연도
2004.11
수록면
139 - 146 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study looks at the late web based data base service which are operated by various organization and the usage patterns of internet users who are attended in architectural field. We collected several cases of web based data base service and analysed the structure of the data base and data Itself. Web based data base service could be divided 4 types by the structures; separate web db, linkage web db, link with individual CP, complex with CP and wed DB. Also Web based data base service could be divided 4 types by the operating organization; public organization, architecture-related company and a specialized architectural data providing service. And we looked at the web DB usage patterns of the architecture-related internet users, especially in search for relative architectural information. An on-line questionnaire was posted in a web site. Over 300 peoples answered to questions and the responses were collected using ASP technique and statistically analyzed by SPSS. The result of the study include the followings. Of the user groups with their occupation, the respondent in design practice was the most advanced users followed by the students. And the most unsatisfied factor were the lack of up-to-date information and the non-existence of the registered web sites for the respondents who did not use web DB in architectural practice. Of the various information medium, CAD file was the most preferred data format due to compatibility and direct adaptation. The slow up and downloading time on the internet is not a main problem any more.

목차

Abstract

1. 서론

2. web DB의 이론 및 선행연구 분석

3. 건축 관련 web DB 서비스 분석

4. 건축 web DB에 관한 사용자 인식조사

5. 결론

참고문헌

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-014374154