메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural network expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN). and named it as a statistical RBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the statistical RBFN to the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Statistical RBF Networks

Ⅲ. Comparisons of a Statistical RBFN with PNN and Fuzzy Logic

Ⅳ. Applications to Prediction of Diabetes Mellitus

Ⅴ. Performance of the Statistical RBFN in Predicting Diabetes Mellitus

Ⅵ. Construction of an Expert System for Diabetes Prediction

Ⅶ. Conclusions

Acknowledgment

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017766082