메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제11권 제1호
발행연도
2005.6
수록면
169 - 189 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
능동적 학습은 훈련 예제의 수가 제한적일 때 효율적으로 분류기를 생성할 수 있는 학습 방법이다. 이 방법에서는 분류하기 모호한 예제에 카테고리를 부여하기 위한 문의 과정과 이렇게 얻어진 예제들을 추가해 가면서 분류기를 재생성하는 과정을 반복적으로 수행한다. 특히 온라인 환경에서는 반복적으로 예제에 카테고리를 부여해야 하는 사용자의 부담을 줄이기 위해 문의 예제의 총 수뿐만이 아니라 문의 횟수 또한 최소화하여야 한다. 예제 수와 문의 횟수를 줄이면서도 좋은 분류기를 생성하기 위해서는 매 문의 시 사용자에게 다양하면서도 대표성이 높은 복수의 모호한 예제들을 선정하여 제시하는 것이 좋다. 본 논문에서는 다양하면서, 대표적이며, 또한 모호성이 높아 능동적 학습에 효과적인 복수의 문의 예제를 선별하기 위하여 군집화 기법을 활용하는 방안을 제안한다. 문서 분류 문제를 대상으로 본 제안 방안을 실험한 결과 모호성만을 기준으로 복수의 문의 예제를 선정하는 방법보다 우수한 분류기를 생성할 수 있음을 확인하였다.

목차

요약

1. 서론

2. 관련 연구

3. 군집화 기법을 이용한 복수 문의 예제 선정 방안

4. 실험 결과

5. 결론 및 향후 연구

참고문헌

Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017819932