메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2004년 춘계학술대회논문집
발행연도
2004.2
수록면
611 - 614 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구는 동일한 병렬기계에서의 총 납기지연의 합을 최소화하는 일정계획 문제에 대해 다룬다. 이 문제는 Lenstra et al.(1977)에 의해 NP-hard로 알려져 있으며, 작업의 수와 기계의 수가 큰 현실적 문제에 대해 적절한 시간 내에 최적해를 찾는다는 것은 사실상 불가능하다. 따라서 본 연구에서는 이 문제를 해결하기 위하여 혼합형 유전 알고리즘(hybrid genetic algorithm)을 제안한다. 혼합형 유전 알고리즘에서는 임의로 발생시킨 모집단에 대해 먼저 유전 알고리즘(genetic algorithm)이 세대를 진행하며 해를 개선한다. 유전 알고리즘이 일정기간동안 더 이상 해를 개선하지 못하면, 부분탐색 알고리즘(local-search algorithm)이 유전 알고리즘의 모집단의 개체들에 대해 해의 개선을 시도한다. 즉, 부분탐색 알고리즘은 모집단 속의 각각의 개체를 초기해로 하여 모집단 내의 개체 수만큼의 부분 최적해(local optimum)들을 구한다. 이렇게 구한 부분 최적해들로 새로운 모집단을 구성하면 다시 유전 알고리즘이 진행된다. 이 과정을 종료조건에 이를때까지 번갈아가며 반복 수행한다.
본 연구에서 제안한 유전 알고리즘에서는 Bean(1994)이 제안한 Random key 방법으로 개체를 표현하였으며 Park(2000)이 제안한 3가지 교차 연산자달을 채용하였다. 부분탐색 알고리즘을 위해서는 쌍대교환(pair-wise interchange) 방법을 통해 이웃해를 생성하였다. 선행실험을 통하여 제안한 혼합형 유전알고리즘에서 사용하는 다양한 모수(parameter)값들을 최적화하였으며 알고리즘의 성능을 비교하기 위하여 기존의 알고리즘과도 비교실험을 수행하였다.

목차

초록

1. 서론

2. 제안한 혼합형 유전알고리즘

3. 유전 파라미터(genetic parameter)의 설정

4. 실험 및 분석

5. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017889526