메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
분류학습에서 높은 정확도를 유지하기 위해서는 충분한 분류 데이타가 필요하게 되는데 분류데이타는 미 분류 데이타보다 생성하기가 어려운 경우가 많다. 따라서 미 분류 데이타를 활용하여 분류의 정확도를 향상 시키는 것은 큰 효용성을 가지며 이러한 미 분류 데이타를 활용하는 대표적인 학습방법 중의 하나는 협력학습(co-training) 알고리즘이다. 이는 데이타를 두 개의 독립적인 속성그룹으로 나누어 두개의 분류자로 학습한 후 미 분류 데이타를 분류하고 그중 가장 신뢰성이 높은 데이타를 분류 데이타에 포함하고 이를 반복하는 학습모델이다. 하지만 이 방법은 전체 데이타의 속성을 독립적인 두개의 집합으로 분할하여야하는 제약이 있다. 따라서 본 연구에서는 이와 같은 문제점을 개선하여 보통의 데이타베이스에 적용시킬 수 있는 새로운 협력학습방법을 제시 하고자한다. 즉, 두 개의 독립적인 속성 그룹으로 나누는 가정을 따르지 않고 전체 속성을 사용할 수 있으며 두 개 이상의 분류자를 사용하는 새로운 협력학습방법을 제안하였다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 새로운 협력학습방법

4. 실험 결과

5. 결론

참고문헌

저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017891020