메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
분산 센서 네트워크에서 대용량 스트림 데이타를 제한된 네트워크, 전력, 프로세서를 이용하여 모든 센서 데이타를 전송하고 분석하는 것은 어렵고 바람직하지 않다. 그러므로 연속적으로 입력되는 데이타를 사전에 분류하여 특성에 따라 선택적으로 데이타를 처리하는 데이타 분류 기법이 요구된다. 이 논문에서는 다차원 센서에서 주기적으로 수집되는 스트림 데이타를 슬라이딩 윈도우 단위로 데이타를 분류하는 기법을 제안한다. 제안된 기법은 전처리 단계와 분류단계로 구성된다. 전처리 단계는 다변량 스트림 데이타를 포함한 각 슬라이딩 윈도우 입력에 대해 데이타의 변화 특성에 따라 문자 기호를 이용하여 다양한 이산적 문자열 데이타 집합으로 변환한다. 분류단계는 각 윈도우마다 생성된 이산적 문자열 데이타를 분류하기 위해 표준 문서 분류 알고리즘을 이용하였다. 실험을 위해 우리는 Supervised 학습(베이지안 분류기, SVM)과 Unsupervised 학습(Jaccard, TFIDF, Jaro, Jaro Winkler) 알고리즘을 비교하고 평가하였다. 실험결과 SVM과 TFIDF 기법이 우수한 결과를 보였으며, 특히 속성간의 상관 정도와 인접한 각 문자 기호를 연결한 n-gram방식을 함께 고려하였을 때 높은 정확도를 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 다변량 스트림 데이타 분류
4. 실험 및 평가
5. 결론
참고문헌
저자소개

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015536004