메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구의 목적은 한국어 문장의 문법관계를 분석하는 데 있다. 주된 문제는 문장의 주어, 목적어, 부사어를 문장에서 찾아내는 것이다. 이 문제를 해결하기 위해서 한국어 구문 분석에서 발생하는 여러 중의성을 고려해야 한다. 우리는 문법관계의 중의성을 먼저 해결하고 그 다음에 주어진 명사구와 용언구의 문법관계 확률을 이용하여 용언구의 술어-논항 관계 중의성을 해소하는 통계적 방법을 제안한다. 제안된 방법은 어절간의 거리, 교차구조 금지, 일문일격의 원칙 등의 한국어 언어 특성을 반영하였다. 용언구와 명사구 사이의 문법관계에 대한 확률은 지지벡터 분류기를 이용하여 추정하였다. 제안된 방법은 문법관계 및 구문구조 부착 말뭉치를 이용하여 자동으로 문법관계를 학습하였고 주어, 목적어, 부사 각각의 문법관계분석에 대해 각각 84.8%, 94.1%, 84.8%의 성능을 얻었다.

목차

요약

Abstract

1. 서론

2. 한국어 문장의 중의성

3. 문법관계분석을 위한 통계 모형

4. 지지벡터 기계를 이용한 문법관계 학습

5. 실험 및 토의

6. 결론 및 향후 과제

참고문헌

저자소개

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018232927