메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.6 No.4
발행연도
2006.10
수록면
307 - 314 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a wavelet and neural network based technology for the monitoring and classification of various types of power quality (PQ) disturbances. Simultaneous and automatic detection and classification of PQ transients, is recommended, however these processes have not been thoroughly investigated so far. In this paper, the hardware and software of a power quality data acquisition system (PQDAS) is described. In this system, an auto-classifying system combines the properties of the wavelet transform with the advantages of a neural network. Additionally, to improve recognition rate, extraction technology is considered.

목차

ABSTRACT
1. Introduction
2. Wavelet Transform
3. Neural Networks
4. Feature Extraction
5. Training and Test
6. Power Quality Data Acquisition System
7. Conclusion
Acknowledgment
REFERENCES
저자소개

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-560-017364330