메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
실세계의 여러 문제들은 마르코프 결정 문제(Markov decision problem, MDP)로 표현될 수 있고, 이 MDP는 모델이 알려진 경우에는 평가치 반복(value iteration) 이나 모델이 알려지지 않은 경우에도 강화학습(reinforcement learning) 알고리즘 등을 사용하여 풀 수 있다. 하지만 이들 알고리즘들은 시간 복잡도가 높아 크기가 큰 실세계 문제에 적용하기 쉽지 않아, MDP를 계층적으로 분할하거나, 여러 단계를 묶어서 수행하는 등의 시간적 추상화(temporal abstraction) 방법이 제안되어 왔다.
이러한 시간적 추상화 방법들의 문제점으로는 시간적 추상화의 디자인에 따라 MDP의 풀이 성능이 크게 달라질 수 있으며, 많은 경우 사용자가 이 디자인을 직접 제공해야 한다는 것들이 있다. 최근 사용자의 간섭이 필요 없이 자동적으로 시간적 추상화를 만드는 방법들이 제안된 바 있으나, 이들 방법들 역시 결과 물에 대한 이론적인 성능 보장(performance guarantee)은 제공하지 못하고 있다.
본 연구에서는 이러한 문제점을 해결하기 위해 MDP의 구조와 그 풀이 성능을 연관짓는 복잡도 척도에 대해 살펴본다. 이를 위해 MDP로부터 얻은 상태 경로 그래프(state trajectory graph)의 위상적 성질들을 여러 네트워크 척도(network measurements) 들을 이용하여 측정하고, 이와 MDP의 풀이 성능과의 관계를 다양한 상황에 대해 실험적, 이론적으로 분석해 보았다.

목차

요약
1. 서론
2. 관련 연구
3. MDP의 성능과 위상적 척도
4. 결론
감사의 글
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016768760