메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
여러 가지 실세계 문제들은 마르코프 결정 문제(Markov decision problem) 들로 형식화하여 풀 수 있으나, 풀이 과정의 높은 계산 복잡도 때문에 실세계 문제들을 직접적으로 다루는 데 많은 어려움이 있다. 이를 해결하기 위해 많은 시간적 추상화(Temporal abstraction) 방법들이 제안되어 왔고 이를 자동화하기 위한 여러 방법들 또한 연구되어 왔으나, 이들 방법들은 명시적인 효율성 척도를 갖고 있지 않아 이론적인 성능 보장을 하지 못하는 문제가 있었다. 본 연구에서는 문제의 크기가 커지더라도 좋은 성능이 보장되는 자동적인 시간적 추상화 구현 방법에 대해 제안한다. 이를 위하여 네트워크 척도(Network measurements)를 이용하여 마르코프 결정 문제의 풀이 효율과 상태 궤적 그래프(State trajectory graph)의 위상 특성간의 관계를 분석하고, 네트워크 척도들 중 평균 측지 거리(Mean geodesic distance)가 마르코프 결정 문제의 풀이 성능과 밀접한 관계가 있다는 사실을 알아내었다. 이 사실을 기반으로 하여, 낮은 평균 측지 거리를 보장하는 복잡계망 모델(Complex network model)을 사용하여 시간적 추상화를 만들어 나가는 알고리즘을 제안한다. 제안된 알고리즘은 사실적인 3차원 게임 환경을 비롯한 여러 문제에 대해 테스트되었고, 문제 크기의 증가에도 불구하고 효율적인 풀이 성능을 보여 주었다.

목차

요약
Abstract
1. 서론
2. MDP와 네트워크 척도(Network measurements)
3. 작은 평균 측지 거리를 갖는 상태 표현 모델
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018446623