메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
miRNA 유전체학의 중요한 이슈로 miRNA가 조절하는 목표 유전자를 예측하는 작업과 miRNA가 목표 유전자를 조절하는 메커니즘이 무엇인지 규명하는 것을 들 수 있다. 본 논문에서는 생물학적 특징들과 다층 퍼셉트론 신경망을 이용하여 miRNA의 목표 유전자를 예측하고 해당 miRNA 조절 메커니즘 타입을 분별해주는 시스템을 제안하고 실제 데이터를 사용하여 그 성능을 평가한다. 실험적으로 검증된 데이터를 사용하여 제안 시스템을 평가해본 결과, 다층 퍼셉트론 신경망을 사용할 경우 84.63%의 정확도로 miRNA의 목표 유전자를 예측할 수 있었고, 87.90%의 정확도로 miRNA가 목표 유전자를 조절하는 메커니즘을 분별할 수 있었다. 학습 데이터가 충분히 많아진다면 제안 시스템의 예측 성능은 더욱 높아질 것으로 예상된다.

목차

요약
1. 서론
2. 방법 및 시스템 구성
3. 결과 및 논의
4. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016827593