메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제17권 제3호
발행연도
2007.6
수록면
27 - 33 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 M.Yoshida 등에 의해 2차원 벡터 공간상의 벡터 분해 문제 (vector decomposition problem 또는 VDP) 가 제안되었고, 그것은 어떤 특별한 조건하에서는 최소한 1차원 부분공간상의 계산적 Diffie-Hellman 문제 (CDHP) 보다 어렵다는 것이 증명되었다. 하지만 그들의 증명이, VDP를 암호학적 프로토콜 설계에 적용하려면 필요한 조건인 벡터 공간상의 주어진 기저에 관한 임의의 벡터의 벡터 분해 문제가 어렵다는 것을 보이는 것은 아니다. 본 논문에서는 비록 어떤 2차원 벡터 공간이 M.Yoshida 등이 제안한 특별한 조건을 만족한다 할지라도, 특정한 모양의 기저에 관해서는 벡터 분해 문제가 다항식 시간 안에 해결될 수 있다는 것을 보여준다. 또한 우리는 다른 구조를 갖는 어떠한 기저들에 대해서는 그 2차원 벡터 공간 상의 임의의 벡터에 대한 벡터 분해 문제가 적어도 CDHP 만큼 어렵다는 것을 증명한다. 그러므로 벡터 분해 문제를 기반이 되는 어려운 문제로 하는 암호학적인 프로토콜을 수행할 때는 기저를 주의하여 선택하여야 한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 벡터 분해 문제(The vector decomposition problem)
Ⅲ. 정리1의 반례
Ⅳ. VDP가 어려운 문제가 될 수 있는 기저
Ⅴ. 결론
참고문헌
〈著者紹介〉

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017034743