메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.21 No.10
발행연도
2007.10
수록면
1,622 - 1,629 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In manufacturing environment prediction of surface roughness is very important for product quality and production time. For this purpose, the finite element method and neural network is coupled to construct a surface roughness prediction model for high-speed machining. A finite element method based code is utilized to simulate the high-speed machining in which the cutting tool is incrementally advanced forward step by step during the cutting processes under various conditions of tool geometries (rake angle, edge radius) and cutting parameters (yielding strength, cutting speed, feed rate). The influences of the above cutting conditions on surface roughness variations are thus investigated. Moreover, the abductive neural networks are applied to synthesize the data sets obtained from the numerical calculations. Consequently, a quantitative prediction model is established for the relationship between the cutting variables and surface roughness in the process of high-speed machining. The surface roughness obtained from the calculations is compared with the experimental results conducted in the laboratory and with other research studies. Their agreements are quite well and the accuracy of the developed methodology may be verified accordingly. The simulation results also show that feed rate is the most important cutting variable dominating the surface roughness state.

목차

Abstract
1. Introduction
2. Basic theory
3. Problem statement and method of approach
4. Results and discussion
5. Conclusion
Reference

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-015932947