메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제34권 제5호
발행연도
2007.10
수록면
389 - 395 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협업 필터링은 정보 과잉 문제를 해결하기 위한 정보 필터링의 주요 기법이며, 전자 상거래 분야에서 추천 시스템과 같은 응용 프로그램에서 널리 사용된다. 협업 필터링 시스템은 사용자들의 대상 항목에 대한 평가를 수집한 후 취향이 서로 비슷한 사용자들의 의견을 바탕으로 아직 평가되지 않은 항목에 대해 예측을 수행한다. 시스템의 예측 성능은 사용자들에 의해 공통적으로 평가된 항목들의 개수에 좌우된다. 그러므로 대상 항목들이 수시로 추가되거나 제거되는 동적 컬렉션의 경우 협업 필터링 알고리즘을 그대로 적용하기 어렵다. 본 논문에서는 동적 컬렉션에 대한 협업 필터링 적용 방법을 제시한다. 제안한 방법에서는 SVD 기법을 이용하여 항목들의 취향 공간을 생성한 후 과거 항목들과 새로운 항목들 간의 연관성을 구하기 위해 핵심 항목들의 클러스터를 구성한다. 이를 평가하기 위해서 사용자 평가 데이타베이스를 시간에 의해 두 부분으로 나누고, 동적으로 추가되는 상황을 시뮬레이션하여 시스템의 예측 성능을 분석했다. 이를 통해 본 방법이 동적 컬렉션에 효과적으로 적용됨을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 동적 컬렉션에 대한 협업 필터링의 적용
4. 실험
5. 결론 및 향후 연구
참고문헌

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016041520