메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷과 웹 기술 발전에 따라 데이터베이스에 축적되는 자료의 양이 급속히 늘어나고 있다. 데이터베이스의 응용 범위가 확대되고 대용량 데이터베이스로부터 유용한 지식을 발견하고자 하는 데이터 마이닝(Data Mining) 기술에 대한 연구가 활발하게 진행되고 있다. 기존의 알고리즘들은 대부분 후보 항목 집합들을 줄임과 동시에 데이터베이스의 크기를 줄이는 방법으로 발전해오고 있다. 그러나 후보 항목집합들을 줄이는 노력이나 데이터베이스의 크기를 줄이는 방법들이 빈발 항목집합들을 생성하는 전 과정에서 필요로 하지는 않는다. 그러한 방법들이 어느 과정에서는 시간을 줄이는데 효과가 있지만 다른 과정에서는 오히려 그러한 방법들을 적용하는데 더 많은 시간이 소요되기 때문이다.
본 논문에서는 트랜잭션들의 길이가 짧거나 데이터베이스를 이루는 항목들의 수가 비교적 적은 트랜잭션 데이터베이스에서 해슁 기법을 사용하여 데이터베이스를 한 번 스캔하고 동시에 각 트랜잭션에서 발생 가능한 모든 부분집합들을 해쉬 테이블에 저장함으로써 최소 지지도에 영향을 받지 않고 기존의 알고리즘보다 더 짧은 시간에 빈발항목집합을 발견할 수 있는 효과적인 연관규칙 탐사 알고리즘을 제안하고 실험하였다.

목차

요약
Abstract
1. 서론
2. 데이터 마이닝 알고리즘
3. 제안 데이터 마이닝 알고리즘 “EDHPA”
4. 실험 및 방법
5. 실험 결과 분석
6. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-410-014684765