메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 데이터의 양이 많아지고 다양해짐에 따라서 데이터를 활용하기 위한 데이터 마이닝에 관한 관심이 증대되고 있다. 데이터 분석을 위한 수집 데이터에는 수집 과정에서 분석가가 원치 않은 데이터 잡음이 발생하는 경우가 있고 그 데이터가 다른 데이터들과 같은 가중치로 데이터 마이닝에 반영되는 경우 예상과 다른 결과를 얻을 수 있다. 따라서 데이터 분석 시 데이터와 전문가 의견이 고려된 데이터 엔트로피(Entropy)를 사용하여 잡음 데이터를 다룰 필요가 있다.
본 논문에서는 전문가의견을 이용한 전문가 의견 목록을 만들고 이를 데이터와 비교하여 유사한 정도에 따라 각 데이터에 가중치를 부여한다. 그리고 이 데이터를 활용한 의사결정나무(Decision Tree)를 사용하여 기존 데이터를 이용한 의사결정나무 보다 데이터 잡음의 영향을 줄이는 방법을 제안한다. 제안한 방법은 학습자의 학습 활동에서 수집된 학습 행위 데이터를 사용하여 실험하였다.

목차

요약
1. 서론
2. 엔트로피 추출
3. 실험
4. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014903374