메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
최근 실내 환경에서 영상 정보를 사용하여 로봇이 서비스를 제공하기 위한 연구가 활발하다. 과거 영상 처리 접근 방법은 산업 환경과 같은 예측 가능한 환경을 바탕으로 미리 정의된 기하학적 모델을 통해 상황을 인식하였기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다, 이에 지식을 기반으로 불확실성을 해결하여 정확도를 향상 시킴으로써 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체 인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의해서 가려져 있는 경우 대상 물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 작은 단위로 설계된 베이지안 네트워크들을 상황에 따라 결합하여 추론 모델이 구성되게 하였고 물체 간의 관계를 효과적으로 표현하고 초기 확률 값을 단일하게 유지하기 위해 제안된 확률 값 설정 방법을 사용하였다. 실험은 물체 관계를 추론하는 모듈의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 82.8%의 정확도를 보여 주었다.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
감사의 글
Ⅳ. 참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015024869