메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제14권 제3호
발행연도
2008.9
수록면
133 - 154 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
데이터 마이닝 분류 문제에서 발생하는 데이터 불균형 문제는 한 범주에 속한 데이터의 수가 다른 범주에 속한 데이터의 수보다 극히 많거나 작은 경우를 말한다. 이러한 불균형 문제를 해결하기 위해 표본추출과 오분류 비용에 근거한 여러 가지 기법들이 제시되었으며, 이들 간의 성능 비교에 대한 연구들도 이루어졌다. 본 논문에서는 기존에 제시된 불균형 문제 해소기법들의 조합적 활용에 대한 타당성에 대해 살펴보고 유전자 알고리즘을 통해 그 결합 비율을 결정하여 더 좋은 성과를 낼 수 있는지에 대해 살펴보도록 한다. 소수 범주에 대한 정확성을 높이기 위해 소수 범주에 대한 F-value에 기초하여 기법들의 결합비율을 결정하고 기존 단일 기법들의 성과와 임의의 비율에 의한 격자표 형태의 결합 성과를 비교하여 결합적 활용의 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, 일반적으로 데이터 불균형 문제를 해결하기 위해 많이 사용되는 4개의 공개 데이터 집합을 이용하여 타당성 분석을 수행하였다. 분석 결과, 전체적으로 단일 기법들의 결합적 활용이 데이터 불균형 해소에 유용한 것으로 나타났다.

목차

1. 서론
2. 관련연구
3. 유전자 알고리즘을 이용한 결합적 활용방안
4. 실험설계
5. 실험 결과와 분석
6. 결론
참고문헌
Abstract
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0