메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국유통학회 유통연구 유통연구 제10권 제3호
발행연도
2005.7
수록면
1 - 14 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
성공적인 공급사슬관리에 있어 성과에 따른 지속적 협업 통제는 매우 중요하다. 본 연구에서는 기계학습 알고리즘인 SVM(Support Vector Machines)을 이용해 균형성과표에 기반한 공급사슬관리 성과에 따른 지속적 협업 통제 모델을 개발하였다. 우리는 지속적 협업 통제모델 개발에 있어 108명의 전문가를 상대로 실증조사를 수행하였다. 본 연구 수행에 있어 4가지 형태의 SVM 커늘 (1) linear, (2) polynomial, (3) Radial Basis Function(RBF), (4) sigmoid kernel을 이용해 공급사슬관리 지속적 협업 예측 정확도를 비교하였다. SVM 커늘 4가지 중 linear kernel의 예측성과가 가장 좋았다. 그리고 본 연구에서는 SVM linear kernel의 예측성과를 ANN(Artificial Neural Network)의 예측성과와 비교하였다. 분석결과 SVM linear kernel이 공급사슬관리에 있어 지속적 협업 예측에 우수한 예측성과를 보여주는 것을 발견하였다. 이러한 결과는 SVM linear kernel이 공급사슬관리의 지속적 협업 예측통제에 있어 우수한 대안을 제공해 줄 것이다. 그러므로 공급사슬관리를 추구하는 기업들은 본 모델을 통해 지속적 협업 통제에 유용한 정보를 얻을 수 있을 것이다.

목차

Ⅰ. Introduction
Ⅱ. Research Background
Ⅲ. Methodology
Ⅳ. Experimental Design and Results
Ⅴ. Conclusions
참고문헌
Abstract

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-326-015703257