메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
대용량 코퍼스를 사용하여 온톨로지를 구축하는 것은 해당 코퍼스에서 등장하는 용어들과 이들 간의 의미관계를 보다 자동화된 방법으로 추출하는 것으로부터 시작한다. 이때 주로 사용하는 방법이 용어들 사이에서 나타나는 문자열을 일종의 패턴으로 취급하여 특정 패턴과 함께 나타나는 용어들을 해당 패턴에 할당된 의미 관계로 설정하는 방법이다. 하지만 기존의 패턴 기반 의미 관계 추출 방법은 한 문장만을 대상으로 패턴을 추출 및 적용하기 때문에 서로 떨어진 용어에 대한 의미 관계를 추출할 수 없다는 단점을 가지고 있다. 본 논문은 이러한 한계점에 착안하여, 의미 관계를 대표하는 각각의 용어를 하나씩 포함하고 기타 용어를 공유하고 있는 서로 떨어진 패턴 쌍을 추출하여 확장된 패턴을 생성하고 이를 의미 관계 추출에 적용하였다. 본 방법론은 is-a 관계의 경우 기존 방법론 보다 7.5% 향상된 83.75%의 정확률을, part-of 관계의 경우에는 5% 향상된 동일한 83.75%의 정확률을 보였으며 상대적 재현율을 통해 실제 재현율의 향상 가능성도 함께 제시하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 방법
4. 실험결과 및 분석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0