메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
단백질 상호작용의 예측 및 실험 결과가 대용량으로 배포되면서 바이오 정보 기술 연구자들은 생명체 내의 단백질 상호작용 네트워크를 구성하기 위해 노력하여 왔다. 일반적으로 대용량의 상호작용 데이터들은 많은 오류를 포함한다고 알려져 있으나, 최근 단백질의 물리 화학적 특성 및 구조를 기반으로 한 방법들이 실제 실험과 병행되어 고화질(High resolution)의 결과를 제공하게 되면서, 특정 종에 대한 단백질 상호작용 네트워크가 점차 완성되고 있다. 그러나, 단순 물리적 링크 수준의 단백질 상호작용 네트워크만으로는 특정 병원체의 발병 메커니즘 규명 등과 같은 응용분야의 활용에 한계가 있다. 본 논문에서는 실험을 통하여 보고된 신호 전달 경로(signaling transduction pathway)를 이용하여 단백질 기능 간의 관계를 방향성이 있는 그래프로 표현한 단백질 기능 흐름 모델을 제시한다. 제안하는 모델은 Gene Ontology에서 정의된 molecular function을 정점(vertex)으로 가지고 이들 사이의 관계를 간선(edge)으로 표현함으로써 특정 기능의 전이를 살펴볼수 있다. 이러한 기능 흐름 모델은 수 만개의 정점(vertex)으로 구성된 단백질 상호작용 네트워크에서 의미 있는 경로를 추출하는 데에 제약 혹은 참조 조건으로 사용될 수 있어 향후 활용도가 클 것으로 기대한다. 평가는 KEGG에서 제공되는 11개의 인간 신호 전달 경로 각각에 대하여 대상 경로를 제외한 나머지로부터 생성된 모델과의 크론바하 알파 계수(Cronbach’s alpha)를 측정하였고(α=0.67), 총 1023개의 흐름 중 α=0.6 이상의 신뢰도에 대하여 총 765개의 흐름을 가지는 기능 흐름 모델을 최종 구성하였다.

목차

요약
Abstract
1. 서론
2. 실험 방법 및 결과
3. 고찰
4. 결론 및 향후 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-019506193