메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장우혁 (한국과학기술연구소) 정석훈 (한국과학기술연구소) 정휘성 (한국과학기술연구소) 현보라 (삼성전자) 한동수 (한국과학기술연구소)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제36권 제10호
발행연도
2009.10
수록면
851 - 860 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
최근 계산을 통한 단백질 상호작용 예측 기법 중, 단백질 쌍이 포함하고 있는 도메인들 사이의 관계에 중점을 둔 도메인 정보 기반 예측 기법들이 다양하게 제안되고 있다. 하지만, 다수의 도메인 쌍들이 상호작용에 기여하는 정도를 정밀하게 반영하는 계산 기법은 드문 실정이다. 본 논문에서는 단백질 상호작용에 있어 도메인 조합 쌍의 상호작용 영향력을 수치화하여 반영한 상호작용 중요도 행렬을 고안하고 이를 기반으로 한 단백질 상호작용 예측 시스템을 구현한다. 일반적인 도메인 조합 기법과 달리, 상호작용 중요도 행렬에서는 상호작용을 위한 도메인간의 협업 확률이 고려된 Weighted 도메인 조합과, 다수의 Weighted 도메인 조합 중 실제 상호작용 주체가 될 확률을 도메인 조합 쌍의 힘(Domain Combination Pair Power, DCPPW)으로 수치화한다. DIP과 IntAct에서 얻어온 S. cerevisiae의 단백질 상호작용 데이터와 Pfam-A 도메인 정보를 사용한 정확도 검증 결과, 평균 63%의 민감도와 94%의 특이도를 확인하였으며, 학습집단의 증가에 따른 안정적인 예측 정확도 향상을 보였다. 본 논문에서 구현한 예측 시스템과 학습 데이터는 웹(http://code.google.com/p/prespi)을 통하여 내려 받을 수 있다.

목차

요약
Abstract
1. 서론
2. 도메인 조합(Domain Combination)과 도메인 조합 쌍(Domain Combination Pair)
3. 상호작용 중요도 행렬(Interaction Significance, IS Matrix) 구축
4. 검증
5. 고찰
6. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018911927