메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第46卷 第3號
발행연도
2009.5
수록면
107 - 115 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
피부색 검출은 피부색과 비피부색에 대한 분류기가 사용되며, 분류 성능이 높은 분류기가 필요하다. 기존의 피부색 검출을 위한 분류기들은 대부분 하나의 칼라 모델을 사용하고 있다. 그러나 칼라 모델에 따라 피부색의 분포 특성이 다르기 때문에 하나 이상의 칼라 모델을 사용함으로써 분류 성능을 높일 수 있다. MLP(Multi Layer Perceptron)는 다른 분류기보다 적은 파라미터를 사용하면서 좋은 분류 성능을 보이고 있다. 하지만 두 개의 칼라 모델을 사용할 경우 MLP의 입력 차원이 증가되기 때문의 파라미터 수가 증가되는 문제가 발생하게 되며, 파라미터 수의 증가는 MLP의 학습 시간이 증가되는 원인이 된다. 따라서 본 논문에서는 두 칼라 모델의 구성 성분을 조합함으로써 피부색과 비피부색의 분류 성능을 향상 시키고, 적은 수의 파라미터가 사용된 피부색 검출 방법을 제안한다. 제안한 부분 연결 MLP는 각 칼라 모델에 따라 연결 강도를 부분적으로 연결함으로써 연결 강도의 수를 감소 시켰으며, 각 부분 네트워크에 서로 다른 칼라 모델의 특성을 학습시킴으로써 분류율을 향상시킬 수 있다. 실험 결과 제안한 부분연결 MLP를 RGB와 CbCr 칼라 정보로 구성 했을 때 91.8%의 분류율을 달성 하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 칼라 모델
Ⅲ. 피부색 검출을 위한 MLP와 부분연결 MLP
Ⅲ. 실험 및 분석
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018351283