메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dadong Zhao (배재대학교) Jeong-Young Song (배재대학교)
저널정보
한국정보기술학회 Proceedings of KIIT Conference 한국정보기술학회 2010년도 IT기반 콘텐츠 융합기술 워크숍 및 워크숍 및 하계종합학술대회 논문집
발행연도
2010.5
수록면
23 - 27 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper has analyzed face characteristics and designed the face features, then it extracts the features and constructed the feature values, and at last, it realizes face recognition through matching of similarity of the feature values. According to the obvious difference of the five sense organs in color, using rgb color space to analyze the distribution range of the five sense organs, and in accordance with the statistical results, the five sense organs in the face are segmented and geometrical parameters of the relevant facial parts are obtained. Construction face feature values with the feature values formed with the proportion of these parameters. Face recognition is to match the feature values. As the extracted feature values have different stability and contribution to the recognition, this paper grants different coefficients to the components, and then uses weighted similarity calculation method to work out the similarity value. Finally, this paper set the maximum similarity matching as the basis for face recognition. For the selection of feature components, we have comprehensively considered the overall features and partial features of face and combined the face shape features and the features of the five sense organs. The experiment shows that these features can reflect the individual features of human face, which can be treated as an effective basis for face recognition, thus to realize face recognition.

목차

Abstract
1. Introduction
2. Property Analysis of Human Face
3. Facial Features Extraction
4. Face Feature values Construction
5. Face Recognition
6. Experiments and Analysis
7. Conclusions
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-566-002369959