메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오정석 (중앙대학교) 심귀보 (중앙대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제4호
발행연도
2010.8
수록면
463 - 468 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
미지의 영역에서 작업을 수행하고자 하는 이동로봇은 주변의 지도가 없을 뿐만 아니라 자신의 위치도 알 수 없다. 이러한 환경의 극복을 위해 가장 많이 쓰이는 방법이 SLAM(Simultaneous Localization And Mapping)이다. SLAM 분야에서 가장 많이 쓰이는 방법은 EKF (Extended Kalman Filter) 기반의 SLAM이다. 최적의 센서 융합 기법이지만 odometeric error 등을 보상하기 위해서는 복잡한 과정이 점차 증가하게 된다. 사람은 SLAM 방식을 이용하여 낯선 장소에서 마음속의 지도를 쉽게 작성하지만 로봇의 경우 SLAM을 수행하는 것은 매우 어렵고 시간이 오래 걸린다는 단점이 생기는 것이다. 이러한 단점의 보완을 위하여 본 논문에서는 대칭모형 SLAM(M-SLAM)을 제안한다. M-SLAM은 대칭에 사용할 모형을 미리 정하고 센서로 받아들인 데이터를 모형과 비교하여 대칭된 모형을 맵에 적용시켜서 작업의 양을 줄이는 방법이다. M-SLAM은 적은 특징점을 이용하여 선택된 대칭 도형과의 유사성 판별을 이용하는 방법이므로 특징점이 적은 거리센서에 사용하기 적합한 특성을 가지고 있다고 할 수 있다. 특징점이 적어도 된다는 장점은 SLAM의 시간을 크게 줄여 줄 수 있다.

목차

요약
Abstract
1. 서론
2. 거리센서의 특징추출
3. 확장 칼만 필터
4. 대칭 모형
5. 결론 및 향후과제
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-002800316